High Order Semi-implicit Schemes for Time Dependent Partial Differential Equations
نویسندگان
چکیده
The main purpose of the paper is to show how to use implicit-explicit (IMEX) RungeKutta methods in a much more general context than usually found in the literature, obtaining very effective schemes for a large class of problems. This approach gives a great flexibility, and allows, in many cases the construction of simple linearly implicit schemes without any Newton’s iteration. This is obtained by identifying the (possibly linear) dependence on the unknown of the system which generates the stiffness. Only the stiff dependence is treated implicitly, then making the whole method much simpler than fully implicit ones. The resulting schemes are denoted as semi-implicit R-K. We adopt several semi-implicit R-K methods up to order three. We illustrate the effectiveness of the new approach with many applications to reaction-diffusion, convection diffusion and nonlinear diffusion system of equations.
منابع مشابه
The new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملSemi-Implicit Runge-Kutta Schemes for non-autonomous differential equations in reactive flow computations
This paper is concerned with time-stepping numerical methods for computing stiff semi-discrete systems of ordinary differential equations for transient hypersonic flows with thermo-chemical nonequilibrium. The stiffness of the equations is mainly caused by the viscous flux terms across the boundary layers and by the source terms modeling finite-rate thermo-chemical processes. Implicit methods a...
متن کاملDesign and Implementation of Predictors for Additive Semi-Implicit Runge--Kutta Methods
Abstract. Space discretization of some time-dependent partial differential equations gives rise to stiff systems of ordinary differential equations. In this case, implicit methods should be used and therefore, in general, nonlinear systems must be solved. The solutions to these systems are approximated by iterative schemes and, in order to obtain an efficient code, good initializers should be u...
متن کاملAPPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملLocal Discontinuous Galerkin Method and High Order Semi-Implicit Scheme for the Phase Field Crystal Equation
Abstract. In this paper, we present a local discontinuous Galerkin (LDG) method and two unconditionally energy stable schemes for the phase field crystal (PFC) equation. The semidiscrete energy stability of the LDG method is proved first. The PFC equation is a sixth order nonlinear partial differential equation (PDE), which leads to the severe time step restriction (Δt = O(Δx6)) of explicit tim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Sci. Comput.
دوره 68 شماره
صفحات -
تاریخ انتشار 2016